Sains Malaysiana 53(9)(2024): 3045-3057
http://doi.org/10.17576/jsm-2024-5309-11
In vitro and in vivo Evaluations of the Antifungal
Activity of Salicylic Acid and Silicon against Ganoderma boninense
(Penilaian in vitro dan in vivo Aktiviti Antikulat Asid Salisilik dan Silikon terhadap Ganoderma boninense)
AINNUR ATIRA
MOHAMMAD SERI1, DZARIFAH MOHAMED ZULPERI1 & SITI
IZERA ISMAIL1,2,*
1Department of Plant Protection, Faculty of
Agriculture, Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor, Malaysia
2Laboratory of Climate-Smart Food
Crop Production, Institute of Tropical Agriculture and Food Security (ITAFoS), Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Diserahkan: 19
November 2023/Diterima: 5 Julai 2024
Abstract
Basal stem rot disease (BSR) in oil palms is one of the primary
diseases that has led to the wide use of fungicides. This increased the
development of fungal isolates resistant to fungicides and led to the search
for alternative strategies to replace the use of fungicides. This study aimed
to evaluate in vitro antifungal activity of salicylic acid
(SA) and silicon (Si) in inhibiting mycelial growth of Ganoderma boninense using
Poison Food Technique and to evaluate the in vivo efficacy of
Si treatment on oil palm seedlings growth and resistance towards G. boninense. Percentage inhibition of radial mycelial
growth (PIRG) was assessed, and Si treatment significantly reduced mycelial
radial growth of G. boninenseup to
100% inhibition at concentrations of 200 and 250 mg/L. The half-maximal
effective concentration (EC50) for Si was 68.57 mg/L, while for SiO2,
it was 273.95 mg/L. The EC50 for salicylic acid was 381.33 mg/L.
For in vivo evaluation, oil palm seedlings treated with Si at
150, 200, and 250 mg/L showed the lowest severity of leaf chlorosis and
necrotic symptoms, which were 7.36%, 6.49%, and 4.05%, respectively. In
contrast, the seedlings without Si showed the highest severity of leaf
symptoms. Examination of internal bole tissues of oil palm seedlings treated
with Si at a concentration of 250 mg/L also recorded a 3.0% mean percentage of
disease severity compared to the untreated infected seedlings, which showed
35.0% disease severity. Our findings demonstrated the potential of Si
application in controlling the BSR disease caused by Ganoderma boninense.
Keywords: Basal stem rot
disease; Ganoderma boninense; oil palm; salicylic acid; silicon
Abstrak
Penyakit reput pangkal batang (BSR) ialah salah satu penyakit kelapa sawit yang paling serius sehingga menyumbang kepada penggunaan racun kulat secara berleluasa. Ini
meningkatkan ketahanan kulat terhadap racun tersebut dan telah mendorong kepada
pencarian strategi alternatif bagi menggantikan penggunaan racun kulat. Tujuan
penyelidikan ini adalah untuk menilai aktiviti antikulat asid salisilik (SA)
dan silikon (Si) secara in vitro dalam menyekat pertumbuhan miselium G. boninense menggunakan teknik Poison Food, serta menilai
kesan silikon terhadap pertumbuhan dan ketahanan anak pokok kelapa sawit
terhadap G. boninense secara in vivo. Peratusan perencatan
pertumbuhan miselium (PIRG) telah dicatatkan dan Si telah merencatkan
pertumbuhan miselium G. boninense sehingga 100% pada
kepekatan 200 dan 250 mg/L. Kepekatan berkesan maksimum separuh (EC50)
silikon yang boleh menghalang pertumbuhan miselium ialah 68.57 mg/L manakala
bagi silikon dioksida ialah 273.95 mg/L. EC50 untuk salisilik asid
pula ialah 381.33 mg/L. Bagi penilaian in vivo pula,
anak pokok yang menerima Si pada kepekatan 150, 200 dan 250 mg/L menunjukkan
keterukan simptom daun paling rendah, iaitu masing-masing sejumlah 7.36%, 6.49%
dan 4.05% manakala anak pokok yang tidak menerima Si menunjukkan keterukan
simptom klorosis dan nekrosis paling tinggi pada daun. Pemeriksaan terhadap
tisu pangkal batang anak pokok menunjukkan bahawa anak pokok yang menerima Si
pada kepekatan 250 mg/L juga mencatatkan purata 3.0% keterukan
pangkal batang berbanding kumpulan anak pokok yang tidak dirawat yang mempunyai
35.0% purata peratusan keterukan pangkal batang. Penyelidikan ini telah
menunjukkan potensi Si dalam mengurangkan keterukan penyakit BSR.
Kata kunci: Asid salisilik; Ganoderma boninense; kelapa sawit;
penyakit reput pangkal batang; silikon
RUJUKAN
Awalludin, M.F., Sulaiman,
O., Hashim, R. & Nadhari, W.N.A.W. 2015. An
overview of the oil palm industry in Malaysia and its waste utilization through
thermochemical conversion, specifically via liquefaction. Renewable
and Sustainable Energy Review 50: 1469-1484.
Bekker,
T.F., Kaiser, C. & Labuschagne, N. 2009. The antifungal activity of
potassium silicate and the role of pH against selected plant pathogenic fungi in
vitro. South African Journal of Plant and Soil 26(1):
55-57.
Bélanger,
R.R., Benhamou, N. & Menzies, J.G. 2003. Cytological evidence of an active
role of silicon in wheat resistance to powdery mildew (Blumeria graminisf. sp. tritici). Phytopathology 93(4):
402-412.
Bivi, M.R., Farhana, M.S.N., Khairulmazmi, A., Idris, A., Ahmed, O.H., Zamri, R. &
Sariah, M. 2012. In vitro effects of salicylic acid, calcium and
copper ions on growth and sporulation of Ganoderma boninense. African Journal of Biotechnology 11(70):
13477-13489.
Bokor, B., Soukup, M., Vaculík, M., Vd’ačný,
P., Weidinger, M., Lichtscheidl, I., Vávrová, S., Šoltys,
K., Sonah, H., Deshmukh, R., Bélanger, R.R., White,
P.J., El-Serehy, H.A. & Lux, A. 2019. Silicon
uptake and localisation in date palm (Phoenix dactylifera) - A unique
association with sclerenchyma. Frontiers of Plant Science 10:
988.
Breton,
F., Hasan, Y., Hariadi, S., Lubis, Z. & De Franqueville, H. 2006. Characterization of parameters for
the development of an early screening test for basal stem rot tolerance in oil
palm progenies. Journal of Oil Palm Research Special Issue: 24-36.
Cai, K.,
Gao, D., Luo, S., Zeng, R., Yang, J. & Zhu, X. 2008. Physiological and
cytological mechanisms of silicon‐induced resistance in rice against
blast disease. Physiologia
Plantarum 134(2): 324-333.
Carneiro-Carvalho, A., Pereira, C., Marques, T., Martins, L., Anjos,
R., Pinto, T., Lousada, J. &
Gomes-Laranjo, J. 2017. Potential of silicon fertilization in the resistance of
chestnut plants to ink disease (Phytophthora cinnamomi). International Journal of
Environment, Agriculture and Biotechnology 2(5): 2740-2753.
Chen, J.,
Zhu, C., Li, L., Sun, Z. & Pan, X. 2007. Effects of exogenous salicylic
acid on growth and H2O2-metabolizing enzymes in rice
seedlings under lead stress. Journal of Environmental Sciences 19(1):
44-49.
Cornélis, J.T., Delvaux, B., Georg, R.B., Lucas, Y., Ranger, J. & Opfergelt, S. 2011. Tracing the origin of dissolved silicon
transferred from various soil-plant systems towards rivers: A review. Biogeosciences 8: 89-112.
Elsherbiny,
E.A. & Taher, M.A. 2018. Silicon induces resistance to postharvest rot of
carrot caused by Sclerotinia sclerotiorum and the possible of defense mechanisms. Postharvest Biology and Technology 140: 11-17.
Euliss, K.W., Dorsey, B.L., Benke, K.C., Banks, M.K. & Schwab, A.P.
2005. The use of plant tissue silica content for estimating transpiration. Ecological
Engineering 25: 343-348.
Frazão, J.J., Prado, R.D., de Souza Junior, J.P. & Rossatto,
D.R. 2020. Silicon changes C:N:P stoichiometry of
sugarcane and its consequences for photosynthesis, biomass partitioning and
plant growth. Scientific Report 10: 12492.
He, W.,
Yang, M., Li, Z., Qiu, J., Liu, F., Qu, X., Qiu, Y. & Li, R. 2015. High
levels of silicon provided as a nutrient in hydroponic culture enhances rice
plant resistance to brown planthopper. Crop Protection 67: 20-25.
Henriet,
C., Bodarwé, L., Dorel, M., Draye,
X. & Delvaux, B. 2008. Leaf silicon content in banana (Musa spp.) reveals the weathering stage of
volcanic ash soils in Guadeloupe. Plant Soil 313: 71-82.
Kaiser,
C., Van der Merwe, R., Bekker, T.F. & Labuschagne, N. 2005. In-vitro inhibition of mycelial growth of
several phytopathogenic fungi, including Phytophthora cinnamomi by soluble silicon. South African Avocado Growers’
Association Yearbook 28(1):
70-74.
Kim,
S.G., Kim, K.W., Park, E.W. & Choi, D. 2002. Silicon–induced cell wall
fortification of rice leaves: A possible cellular mechanism of enhanced host
resistance to blast. Phytopathology 92: 1095-1103.
Łaźniewska, J., Macioszek,
V.K. & Kononowicz, A.K. 2012. Plant-fungus
interface: The role of surface structures in plant resistance and
susceptibility to pathogenic fungi. Physiological and Molecular Plant
Pathology 78: 24-30.
Liang,
Y.C., Sun, W.C., Si, J. & Römheld, V. 2005.
Effects of foliar‐and root‐applied silicon on the enhancement of
induced resistance to powdery mildew in Cucumis sativus. Plant Pathology 54(5):
678-685.
Liu, L.,
Raupach, G.S., Murphy, J.F., Tuzun, S. &
Kloepper, J.W. 1995. Induced systemic resistance in cucumber and tomato against
cucumber Mosaic Cucumovirus using plant
growth-promoting Rhizobacteria (PGPR). Plant Disease 80: 891-894.
Najihah,
N.I., Hanafi, M.M., Idris, A.S. & Hakim, M.A. 2015. Silicon treatment in
oil palms confers resistance to basal stem rot disease caused by Ganoderma boninense. Crop Protection 67: 151-159.
Nasser,
A. & Bhai, R.S. 2021. Elucidating the antifungal effect of potassium
silicate on Macrophomina phaseolina, the dry rot pathogen of ginger. Silicon 14(10):
5347-5358.
Nusaibah,
S.A., Saad, G. & Tan, G.H. 2017. Antagonistic efficacy of Trichoderma harzianum and Bacillus cereus against Ganoderma disease of oil palm via Dip, Place and Drench (DPD) artificial inoculation
technique. International Journal of Agriculture and Biology 19: 299-360.
Rakib,
M.R.M., Bong, C.F.J., Khairulmazmi, A. & Idris,
A.S. 2015. Aggressiveness of Ganoderma boninense and G. zonatum isolated from upper-and basal stem rot of oil palm (Elaeis guineensis) in Malaysia. Journal of Oil
Palm Research 27(3): 229-240.
Rees,
R.W., Flood, J., Hasan, Y., Potter, U. & Cooper, R.M. 2009. Basal stem rot
of oil palm (Elaeis guineensis);
mode of root infection and lower stem invasion by Ganoderma boninense. Plant Pathology 58(5): 982-989.
Riyadi, A. 2021. Design of backward chaining
for identification palm oil diseases base on expert system. Journal of
Physics: Conference Series 1823(1): 012112.
Rodrigues, F.A., Datnoff, L.E., Korndorfer, G.H., Seebold, K.W. & Rush, M.C. 2001.
Effect of silicon and host resistance on sheath blight development in rice. Plant
Disease 85: 827-832.
Royse,
D.J. & Ries, S.M. 1978. The influence of fungi isolated from peach twigs on
the pathogenicity of Cytospora cincta. Phytopathology 68(4): 603-607.
Sakr, N.
2016. Silicon control of bacterial and viral diseases in plants. Journal
of Plant Protection Research 56: 331-336.
Sariah,
M. & Zakaria, H. 2000. The use of soil amends for the control of basal stem
rot of oil palm seedlings. In Ganoderma Disease of Perennial Crops,
edited by Flood, J., Bridge, J.D. & Holderness, M. UK: CABI Publishing. pp.
89-100.
Shetty,
R., Jensen, B., Shetty, N.P., Hansen, M., Hansen, C.W., Starkey, K.R. &
Jørgensen, H.J.L. 2012. Silicon induced resistance against powdery mildew of
roses caused by Podosphaera pannosa. Plant Pathology 61(1): 120-131.
Song,
X.P., Verma, K.K., Tian, D.D., Zhang, X.Q., Liang, Y.J., Huang, X., Li, C.N.
& Li, Y.R. 2021. Exploration of silicon functions to integrate with biotic
stress tolerance and crop improvement. Biological Research 54:
19.
Sousa,
R.S., Rodrigues, F.Á., Schurt, D.A., Souza, N.F.A.
& Cruz, M.F.A. 2013. Cytological aspects of the infection process of Pyricularia oryzae on leaves of wheat plants supplied with silicon. Tropical Plant
Pathology 38: 472-477.
Waewthongrak, W., Pisuchpen, S. & Leelasuphakul,
W. 2015. Effect of Bacillus subtilis and chitosan applications on green mold (Penicillium digitatumSacc.) decay in
citrus fruit. Postharvest Biology and Technology 99: 44-49.
Wang, M.,
Gao, L., Dong, S., Sun, Y., Shen, Q. & Guo, S. 2017. Role of silicon on
plant–pathogen interactions. Frontiers in Plant Science 8: 701.
Wu, H.S.,
Raza, W., Fan, J.Q., Sun, Y.G., Bao, W., Liu, D.Y., Huang, Q.W., Mao, Z., Shen,
Q.R. & Miao, W.G. 2008. Antibiotic effect of exogenously applied salicylic
acid on in vitro soilborne pathogen, Fusarium oxysporum f. sp. niveum. Chemosphere 74(1):
45-50.
Yunita, O., Rochmawati,
I.D., Fadhilah, N.A. & Benarkah,
N. 2016. Molecular study of intraspecific differences among Sauropus androgynus (L.) Merr.
from Indonesia revealed by ITS region variability. Biotechnology &
Biotechnological Equipment 30(6): 1212-1216.
*Pengarang untuk surat-menyurat; email: izera@upm.edu.my
|